воскресенье, 3 июня 2018 г.

Função de autocorrelação do processo médio móvel


Autocorrelação do processo médio em movimento Este exemplo mostra como introduzir autocorrelação em um processo de ruído branco por filtragem. Quando introduzimos a autocorrelação em um sinal aleatório, manipulamos seu conteúdo de freqüência. Um filtro médio móvel atenua os componentes de alta freqüência do sinal, suavizando-o efetivamente. Crie a resposta de impulso para um filtro de média móvel de 3 pontos. Filtra uma sequência de ruído branco N (0,1) com o filtro. Defina o gerador de números aleatórios para as configurações padrão para resultados reprodutíveis. Obtenha a autocorrelação de amostra tendenciosa para 20 atrasos. Trace a autocorrelação da amostra juntamente com a autocorrelação teórica. A autocorrelação de amostra capta a forma geral da autocorrelação teórica, mesmo que as duas seqüências não concordem em detalhes. Nesse caso, é claro que o filtro introduziu autocorrelação significativa apenas sobre os atrasos -2,2. O valor absoluto da sequência decai rapidamente para zero fora desse intervalo. Para ver que o conteúdo de freqüência foi afetado, trace estimativas de Welch das densidades espectrales de potência dos sinais originais e filtrados. O ruído branco foi colorido pelo filtro médio móvel. MATLAB e Simulink são marcas registradas da The MathWorks, Inc. Por favor, veja mathworkstrademarks para obter uma lista de outras marcas registradas pertencentes à The MathWorks, Inc. Outros produtos ou nomes de marcas são marcas comerciais ou marcas registradas de seus respectivos proprietários. Selecione seu país2.1 Modelos médios móveis (modelos MA) Os modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos e os termos médios em movimento. Na semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor remanescente de x t. Por exemplo, um termo autorregressivo de lag 1 é x t-1 (multiplicado por um coeficiente). Esta lição define os termos médios móveis. Um termo médio móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Deixe (wt overset N (0, sigma2w)), o que significa que o w t é idêntico, distribuído independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de 1ª ordem, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) O modelo de média móvel da ordem q , Denotado por MA (q) é (xt mu wt theta1w theta2w dots thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele flip os signos algébricos de valores de coeficientes estimados e termos (desactuados) em fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se os sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades teóricas de uma série de tempo com um modelo MA (1) Observe que o único valor diferente de zero na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma amostra ACF com autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para estudantes interessados, as provas dessas propriedades são um apêndice para este folheto. Exemplo 1 Suponha que um modelo de MA (1) seja x t 10 w t .7 w t-1. Onde (com o excesso de N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por um gráfico deste ACF segue. O enredo que acabamos de mostrar é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra geralmente não fornece um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito dessa trama. A amostra ACF para os dados simulados segue. Vemos um pico no intervalo 1 seguido de valores geralmente não significativos para atrasos após 1. Observe que o ACF de amostra não corresponde ao padrão teórico da MA subjacente (1), que é que todas as autocorrelações por atrasos após 1 serão 0 . Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria os mesmos recursos amplos. Propriedades terapêuticas de uma série de tempo com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Observe que os únicos valores não nulos no ACF teórico são para atrasos 1 e 2. As autocorrelações para atrasos superiores são 0 . Assim, uma amostra de ACF com autocorrelações significativas nos intervalos 1 e 2, mas as autocorrelações não significativas para atrasos maiores indicam um possível modelo de MA (2). Iid N (0,1). Os coeficientes são de 1 0,5 e 2 0,3. Uma vez que este é um MA (2), o ACF teórico terá valores diferentes de zero apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não-zero são A Um gráfico do ACF teórico segue. Como quase sempre é o caso, os dados da amostra não se comportam tão perfeitamente quanto a teoria. Nós simulamos n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). A série de séries temporais dos dados segue. Tal como acontece com a série de séries temporais para os dados da amostra MA (1), você não pode contar muito com isso. A amostra ACF para os dados simulados segue. O padrão é típico para situações em que um modelo de MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2 seguidos de valores não significativos para outros atrasos. Observe que, devido ao erro de amostragem, a amostra ACF não corresponde exatamente ao padrão teórico. ACF para General MA (q) Modelos Uma propriedade de modelos de MA (q) em geral é que existem autocorrelações diferentes de zero para os primeiros intervalos de q e autocorrelações 0 para todos os atrasos gt q. Não singularidade de conexão entre valores de 1 e (rho1) em MA (1) Modelo. No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E depois use 1 (0,5) 2 para 1. Você obterá (rho1) 0.4 em ambos os casos. Para satisfazer uma restrição teórica chamada invertibilidade. Nós restringimos os modelos de MA (1) para ter valores com valor absoluto inferior a 1. No exemplo que acabamos de dar, 1 0.5 será um valor de parâmetro permitido, enquanto que 1 10.5 2 não irá. Invertibilidade de modelos de MA Um modelo de MA é considerado inversível se for algébricamente equivalente a um modelo de AR de ordem infinita convergente. Ao convergir, queremos dizer que os coeficientes de AR diminuem para 0, enquanto nos movemos para trás no tempo. Invertibilidade é uma restrição programada em software de série temporal usado para estimar os coeficientes de modelos com termos MA. Não é algo que buscamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são apresentadas no apêndice. Nota de teoria avançada. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo inversível. A condição necessária para a invertibilidade é que os coeficientes possuem valores tais que a equação 1- 1 y-. - q e q 0 possui soluções para y que se encontram fora do círculo da unidade. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10 w t. 7w t-1. E depois simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0,7), lag. max10) 10 lags de ACF para MA (1) com theta1 0,7 lags0: 10 cria uma variável chamada atrasos que varia de 0 a 10. trama (Lag, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Nomeado acfma1 (nossa escolha de nome). O comando de parcela (o comando 3) representa atrasos em relação aos valores ACF para os atrasos 1 a 10. O parâmetro ylab rotula o eixo y e o parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF, use simplesmente o comando acfma1. A simulação e os gráficos foram feitos com os seguintes comandos. Xcarima. sim (n150, list (mac (0.7))) Simula n 150 valores de MA (1) xxc10 acrescenta 10 para fazer a média 10. Padrões de simulação significa 0. plot (x, typeb, mainSimulated MA (1) dados) Acf (x, xlimc (1,10), mainACF para dados de amostra simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt .5 w t-1 .3 w t-2. E depois simulou n 150 valores desse modelo e traçou as séries temporais da amostra e a amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal para MA (2) com theta1 0,5, Theta20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) xxc10 plot (x, typeb, principal Simulated MA (2) Series) acf (x, xlimc (1,10), MainACF para dados simulados de MA (2) Apêndice: Prova de propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Variance: (texto (texto) (mu wt theta1 w) Texto de 0 texto (wt) (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 . A razão é que, por definição de independência do peso. E (w k w j) 0 para qualquer k j. Além disso, porque o w t tem 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo de MA reversível é aquele que pode ser escrito como um modelo de AR de ordem infinita que converge para que os coeficientes de AR convergem para 0 à medida que nos movemos infinitamente de volta no tempo. Bem, demonstre invertibilidade para o modelo MA (1). Em seguida, substituímos a relação (2) para w t-1 na equação (1) (3) (zt wt theta1 (z - theta1w) wt theta1z - theta2w) No momento t-2. A equação (2) torna-se então substituímos a relação (4) para w t-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Se continuássemos ( Infinitamente), obteríamos o modelo de AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z dots) Note, no entanto, que se 1 1, os coeficientes que multiplicam os atrasos de z aumentarão (infinitamente) de tamanho à medida que avançarmos Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo de MA reversível (1). Modelo de ordem infinita MA Na semana 3, veja que um modelo de AR (1) pode ser convertido em um modelo de MA de ordem infinita: (xt - mu wt phi1w phi21w dots phik1 w dots sum phij1w) Este somatório de termos de ruído branco passados ​​é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos que retornam no tempo. Isso é chamado de uma ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Recorde na Semana 1, observamos que um requisito para um AR estacionário (1) é aquele 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Este último passo usa um fato básico sobre séries geométricas que requerem (phi1lt1) caso contrário a série diverge. Conteúdo de correlação de NavigationA Na análise de dados, normalmente começamos com as propriedades estatísticas descritivas dos dados da amostra (por exemplo, média, desvio padrão, distorção, curtose, distribuição empírica, etc.). Esses cálculos são certamente úteis, mas eles não contabilizam a ordem das observações nos dados da amostra. A análise de séries temporais exige que prestem atenção à ordem e, portanto, requer um tipo diferente de estatística descritiva: estatística descritiva de séries temporais ou simplesmente análise de correlograma. A análise de correlograma examina a dependência tempo-espaço dentro dos dados da amostra, e enfoca a auto-covariância empírica, auto-correlação e testes estatísticos relacionados. Finalmente, o correlograma é uma pedra angular para identificar o (s) modelo (s) e modelo (s). O que um gráfico para auto correlação (ACF) ou auto-correlação parcial (PACF) nos informa sobre a dinâmica do processo subjacente Este tutorial é um pouco mais teórico do que os tutoriais anteriores na mesma série, mas faremos o nosso melhor para dirigir as intuições Casa para você. Antecedentes Primeiro, comece com uma definição para a função de auto-correlação, simplifique-a e investigue o ACF teórico para um processo de ARMA. Função de auto-correlação (ACF) Por definição, a correlação automática para lag k é expressa da seguinte forma: usando a fórmula de correlação automática de MA (q), podemos calcular as funções de auto-correlação de ARMA (p, q) para sua representação de MA . Isso está ficando intenso Alguns de vocês podem estar se perguntando por que não usamos VAR ou uma representação espacial de estados para simplificar as notações. Eu fiz um ponto para permanecer no domínio do tempo e evitei novas idéias ou truques de matemática, pois não serviriam nossas intenções aqui: Implicando a ordem ARMA exata usando os valores de ACF por si mesmos, o que é tudo menos preciso. Intuição: os valores de ACF podem ser considerados como valores de coeficientes do modelo equivalente de MA. Intuição: A variância condicional não tem barreira (efeito) nos cálculos de auto-correlação. Intuição: A média de longo prazo também não possui barreira (efeito) nas auto-correlações. Função de auto-correlação parcial (PACF) Até agora, vimos que identificar a ordem do modelo (MA ou AR) não é trivial para casos não simples, por isso precisamos de outra ferramenta de auto-correlação parcial (PACF). A função de auto-correlação parcial (PACF) desempenha um papel importante na análise de dados com o objetivo de identificar a extensão do atraso em um modelo autoregressivo. O uso desta função foi introduzido como parte da abordagem Box-Jenkins para a modelagem de séries temporais, pelo que se poderia determinar os atrasos adequados p em um modelo AR (p) ou em um modelo ARIMA (p, d, q) estendido, traçando As funções de auto-correlação parcial. Simplificando, o PACF para lag k é o coeficiente de regressão para o kth term, como mostrado abaixo: O PACF assume que o modelo subjacente é AR (k) e usa múltiplas regressões para calcular o último coeficiente de regressão. Intuição rápida: os valores de PACF podem ser pensados ​​(grosso modo) como valores de coeficientes do modelo de AR equivalente. Como o PACF é útil para nós Supondo que temos um processo AR (p), então o PACF terá valores significativos para os primeiros períodos de p e cairá para zero depois. E quanto ao processo MA O processo MA tem valores PACF não-nulos para um número (de teorias) infinito de atrasos. Exemplo 4: MA (1)

Комментариев нет:

Отправить комментарий